9x^2+42x+45=(3x-5)(2x+1)

Simple and best practice solution for 9x^2+42x+45=(3x-5)(2x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2+42x+45=(3x-5)(2x+1) equation:



9x^2+42x+45=(3x-5)(2x+1)
We move all terms to the left:
9x^2+42x+45-((3x-5)(2x+1))=0
We multiply parentheses ..
9x^2-((+6x^2+3x-10x-5))+42x+45=0
We calculate terms in parentheses: -((+6x^2+3x-10x-5)), so:
(+6x^2+3x-10x-5)
We get rid of parentheses
6x^2+3x-10x-5
We add all the numbers together, and all the variables
6x^2-7x-5
Back to the equation:
-(6x^2-7x-5)
We add all the numbers together, and all the variables
9x^2+42x-(6x^2-7x-5)+45=0
We get rid of parentheses
9x^2-6x^2+42x+7x+5+45=0
We add all the numbers together, and all the variables
3x^2+49x+50=0
a = 3; b = 49; c = +50;
Δ = b2-4ac
Δ = 492-4·3·50
Δ = 1801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-\sqrt{1801}}{2*3}=\frac{-49-\sqrt{1801}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+\sqrt{1801}}{2*3}=\frac{-49+\sqrt{1801}}{6} $

See similar equations:

| 125m-100m+43875=45,000-200m | | 94=255-v | | h+48=-20 | | -3v+-13=5 | | -2y+2(4-2y)=8-5y-12 | | 143-v=249 | | 75=-5u | | 7w+16=11w | | z/2+3=4 | | x/4+3.2=5.2 | | 8+9z=8z-1 | | 221=115-y | | s+-12=1 | | x÷4+3.2=5.2 | | 40=2-x | | 4(2y+3)=2(12-y) | | -k=2 | | -1+3x=2x+1 | | x+8÷5=4 | | 16x+4=139 | | -x+11x-12=28 | | 6x+20=5x-1 | | 7+15x=4x+51 | | x/2+17=29 | | -3x+7x=24 | | 5y-3y=10+4 | | 7+9=9+x | | 4(y-7)-8y=-16 | | 8x=20=-12 | | -16=-2w-4 | | 3(y–2)+15=–3(y–3)+6y | | 2b=10=-8 |

Equations solver categories